Early season treatment and the control of breech strike in unmulesed sheep

Australian Wool Innovation Limited

John Larsen, Leah Tyrell & Norman Anderson

The Mackinnon Project, Faculty of Veterinary Science University of Melbourne

Background:

- 1) With unmulesed merinos in SE Australia:
 - ↑'d dag, wrinkle & stain → increased risk of breech strike
 - Modified management crutching, shearing, [^]d supervision
- 2) Opportunity for better timing of chemical applications ('IPM'):
 - Routine treatments given to 50% weaners & 40% ewes (IPM-s survey)
 - Fly life-cycle \rightarrow Early season treatment
 - no adult flies during winter
 - overwintered larvae emerge as adult flies in Sep-Oct

L.cuprina life-cycle:

Eggs $\rightarrow 1^{st} \rightarrow 2^{nd} \rightarrow 3^{rd}$ instars \rightarrow wandering larvae (leave sheep 4-5 d after eggs laid)

Main aims of study

- Measure the prevalence of breech strike in <u>unmulesed</u> sheep given an early season long acting treatment
- 2) Compare prevalence of breech strike of <u>clipped</u> sheep with the 'gold standard' (<u>mulesed</u> sheep)
 [both groups treated tactically]
- Compare indicator traits, management & costs/ returns of the 3 groups

Study design (2008-2011)

- Three treatment groups on 3 farms
 - 300-400 sheep/ group
 - Ewes only Farms 1 & 3, wethers also on Farm 2
- Group 1 'Mulesed + tactical treatment' of Spinosad when required
- Group 2 'Clipped + tactical treatment' of Sinosad when required
- Group 3 'Not mulesed + early season long acting treatment' (dicyclanil (Clik™) in Sep-Oct)

Summary of flocks

Spring-lambing merino flocks:

- Coleraine, 680 mm; 18.5 micron breeds own rams using an index, shears March (wnrs Mar)
- Ballarat, 620 mm; 17.5 micron traditional fine wool base flock, recently started breeding own rams, shears Dec
- 3) East Gippsland, 600 mm; 18.5 micron – medium-fine wool base & Hazeldean rams, shears Dec (wnrs March)

A national wool R&D technical update June 2010

Observations

- 1) Prevalence of breech strike in spring
- 2) Indicator traits:
 - a) Dag & urine stain
 - b) Breech wrinkle
 - c) Breech bare area scores & measurements
- 3) Production/ welfare:
 - a) Time to crutch & shear
 - b) Bodyweight, fleece weight, weight of crutchings
 - c) Breech cuts
- 4) Fly numbers (Lucitraps[™])

Visits – Farm 1

Visit	BWt	Dag	Stn	Wr	Bare	Strike	Cuts	DWt/ GFW	Time (s)
Mark - Oct08	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Wean - Dec08	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
Feb 2009	\checkmark	\checkmark	\checkmark			\checkmark			
Mar - Crutch						\checkmark		\checkmark	\checkmark
Mar - Shear								\checkmark	
Oct - Early treat't	\checkmark	\checkmark	\checkmark						
Dec - Crutch		✓	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
Mar10 - Shear								\checkmark	\checkmark
Apr - Pre-join	\checkmark	\checkmark	\checkmark	\checkmark	✓M				

Results - Breech wrinkle score at marking

- Average wrinkle scores = 2.8, 2.7 & 2.7 on Farms 1-3
- A high proportion of sheep are susceptible (score \geq 3)

Breech wrinkle at hogget age

- 1) In unmulesed groups:
 - Average scores = 2.4, 2.5 & 2.9
 - 40-70% ≥ score 3
- 2) Mulesing effectively reduced wrinkle score: by 1.0 Wrinkle Score
 - average = 1.4, 1.3 & 2.0
- Clipped group intermediate on all farms: reduced wrinkle score by 0.3 Wrinkle Score
 - average = 2.0, 2.3 & 2.6

Bare area score at weaning

- Not much variation
- Average bare score of unmulesed = 1.9, 1.4 & 1.6

Bare area measurements as hoggets

- For clipped compared to unmulesed:
 - Only modest increases in width to date (+24mm, +10mm & +6mm)
 - No significant increase in depth

Breech strike at 14-16 m.o.

Farm	Date	Group	Prevalence of Breech strike
1	17-Dec-09^	Mulesed	
		Clipped	
		Not mulesed	1.1% (3/ 279)
2 10-Feb-10 [^]		Mulesed	
		Clipped	
		Not mulesed	0% (0/ 235)
3	7-Dec-09^	Mulesed	
		Clipped	
		Not mulesed	0% (0/ 318)

^ 12, 16 & 12 weeks after Clik™ treatment

Note: only Not mulesed group were treated with (dicyclanil Clik[™]) in Sep-Oct

Breech strike at 14-16 m.o.

Note: only Not mulesed group were treated with (dicyclanil Clik[™]) in Sep-Oct

Breech strike at 14-16 m.o.

Note: only Not mulesed group were treated with (dicyclanil Clik[™]) in Sep-Oct

Autumn breech/ tail/ body strike on Farm 2

Autumn breech/ tail strike on Farm 2

Date/ mob	Group	Strikes	DS [Wr]		
			≤ 2	≥ 3	
10 Feb to 8 May (Ewes)	Mulesed	0.4% (1/245)	1	0 [1]	
	Clipped	8.1% (19/234)	17 [11]	1 [8]	
	Not mulesed	3.4% (8/235)	7 [2]	1 [6]	

Dag score

 Clipped group intermediate for <u>hogget</u> dag scores on 2 of 3 farms

Average Hogget Dag Score (0-5 scale) Farm Mulesed Clipped Not mulesed 1 – Dec 2.3^c **1.1**^a 1.9^b 2 – Sep 8.0 0.7 0.6 3.3^c 3 - Nov2.6^a 2.9^b

Hogget dag score

 Clipped group intermediate for <u>hogget</u> dag score on 2 of 3 farms

Form	Average Hogget Dag Score (0-5 scale)					
Failli	% with severe dag (DS \geq 3)					
	Mulesed	Clipped	Not mulesed			
1 – Dec	1.1 ^a	1.9 ^b	2.3 ^c			
	13%	34%	43%			
2 – Sep	0.7	0.6	0.8			
	4.4%	7.2%	8.6%			
3 – Nov	2.6ª	2.9 ^b	3.3 ^c			
	49%	58%	71%			

Hogget crutching – Farm 3

Hogget stain scores

• Clipped group similar to unmulesed on Farm 1, all groups similar Farm 2, Clipped intermediate on Farm 3

_	Average Hogget Stain Score (1-5)					
Farm	% with moderate stain (≥ 3)					
	Mulesed	Clipped	Not mulesed			
1 – Oct	1.3 ^a	1.7 ^b	1.6 ^b			
	5%	19%	21%			
2 – Sep	1.2 ^a	1.2 ^a	1.3 ^a			
	2.4%	2.4%	3.7%			
3 – Nov	3.0 ^a	3.1 ^b	3.4 ^c			
	39%	55%	74%			

Crutching weaners (Mar-Apr 2009)

Compared to mulesed ewe weaners:

- a) Clipped ewe weaners
 - took 5-7 seconds (10-40%) longer to crutch
 - had up to 64 g (60%) extra dags
- b) Unmulesed ewe weaners:
 - 12-18 seconds (35-120%) longer to crutch
 - 80-170 g (40-140%) extra dags

Crutching weaners (Mar-Apr 2009)

Dags increased crutching times

Crutching Hoggets

Slightly bigger differences; compared with mulesed group:

- Clipped ewe hoggets
 - took 13-21 seconds (40-80%) longer to crutch
 - had 180g (120%) extra dags
- Unmulesed ewe hoggets
 - 23-52 seconds (90-145%) longer to crutch
 - 270 g (180%) extra dags
- Will assess maiden ewes in Dec 2010 (& 2011?)

Breech cuts – hogget crutching/ shearing

Scored on a 0-3 scale:

- 0 = no cuts
- 1 = minor cuts
- 2 = multiple (>3) minor cuts or 'moderate' cuts
- 3 = severe cuts

Significantly more score 2-3 cuts in:

- unmulesed vs. clipped (2 of 3 farms)
- clipped vs. mulesed

Summary of interim results

- Early season treatment of unmulesed sheep with dicyclanil (Clik[™]) prevented most breech strikes:
 - was effective when applied over dags (Farm 3)
 - a reduced period of protection in sheep that develop dag or stain after application? (Farm1)
- 2) Clips:
 - Provide some management & welfare advantages
 - > Need preventive treatments for breech strike in high risk areas
- Cost comparisons still to be determined will vary according to farm (esp. amount of dag & crutching needed)
- 4) Unmulesed sheep need to reduce dags, improve ease of crutching:
 - Control scouring Genetic selection, worms, bacterial enteritis
 - Modified management
 - Shearing gear

Acknowledgements

- Property owners/managers & contractors:
 - Mark & Jane Bunge, 'Kooringal'
 - Glynn Spencer & David Mackay, 'Larundel'
 - Rosemary & Fergus Irving, 'Tramore'
- AWI Funding
- Novartis & Elanco Animal Health donation of product
- University of Melbourne scholarship for Leah Tyrell
- Colleagues at The Mackinnon Project

Australian Wool Innovation Limited