

University of Melbourne Team

- Batterham and Perry School of Biosciences
 - Lucilia cuprina colony
 - Assay development (Behavioural and toxicology assays)
 - Developing genomic editing through CRISPR
- Anstead and Gasser Faculty of Veterinary Science
 - Genome and transcriptome assembly
 - Gene annotation
 - Identification of targets for new control strategies
 - Baits, insecticides and vaccines

Creating awareness of genome resource

ARTICLE

Received 9 Feb 2015 | Accepted 29 Apr 2015 | Published 25 Jun 2015

OOI: 10.1038/ncomms8344

OPEN

Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions

Clare A. Anstead¹, Pasi K. Korhonen¹, Neil D. Young¹, Ross S. Hall¹, Aaron R. Jex¹, Shwetha C. Murali², Daniel S.T. Hughes², Siu F. Lee³, Trent Perry³, Andreas J. Stroehlein¹, Brendan R.E. Ansell¹, Bert Breugelmans¹, Andreas Hofmann⁴, Jiaxin Qu², Shannon Dugan², Sandra L. Lee², Hsu Chao², Huyen Dinh², Yi Han², Harsha V. Doddapaneni², Kim C. Worley², Donna M. Muzny², Panagiotis Ioannidis⁵, Robert M. Waterhouse⁵, Evgeny M. Zdobnov⁵, Peter J. James⁶, Neil H. Bagnall⁷, Andrew C. Kotze⁷, Richard A. Gibbs², Stephen Richards², Philip Batterham³ & Robin B. Gasser¹

Biotechnology Advances xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Biotechnology Advances

journal homepage: www.elsevier.com/locate/biotechadv

Research review paper

A blow to the fly — $Lucilia\ cuprina\ draft\ genome\ and\ transcriptome\ to\ support\ advances\ in\ biology\ and\ biotechnology$

Clare A. Anstead ^a, Philip Batterham ^b, Pasi K. Korhonen ^a, Neil D. Young ^a, Ross S. Hall ^a, Vernon M. Bowles ^a, Stephen Richards ^c, Maxwell J. Scott ^d, Robin B. Gasser ^{a,*}

- ^a Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- b School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
 C Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- d Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA

✓ DNA gene sequence published 2015

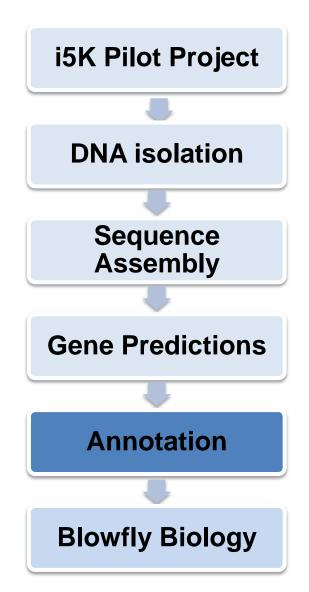
Parasites & Vectors
(D 12 June 2016 5,000 words)

REVIEW

New genomic resources underpin future molecular explorations of *Lucilia cuprina* and related flies

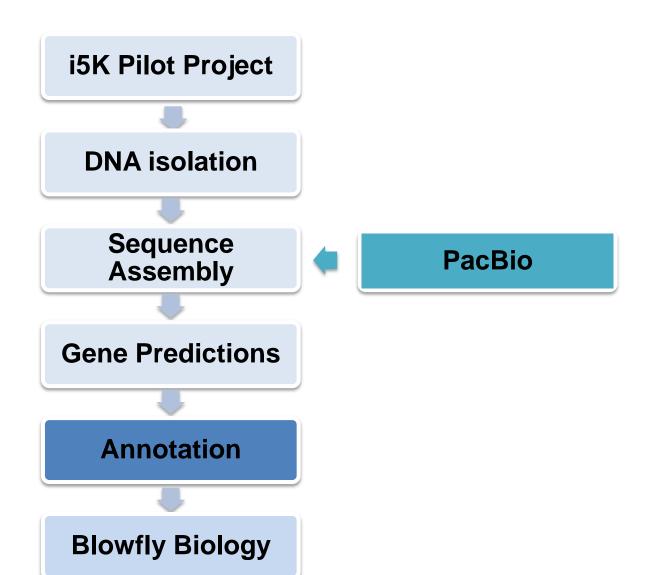
Clare A. Anstead^{1*}, Trent Perry², Stephen Richards³, Pasi K. Korhonen¹, Neil D. Young¹, Vernon M. Bowles¹, Philip Batterham² and Robin B. Gasser^{1*}

- ✓ New, valuable resource
- ✓ Promoting awareness to enable and encourage other researchers

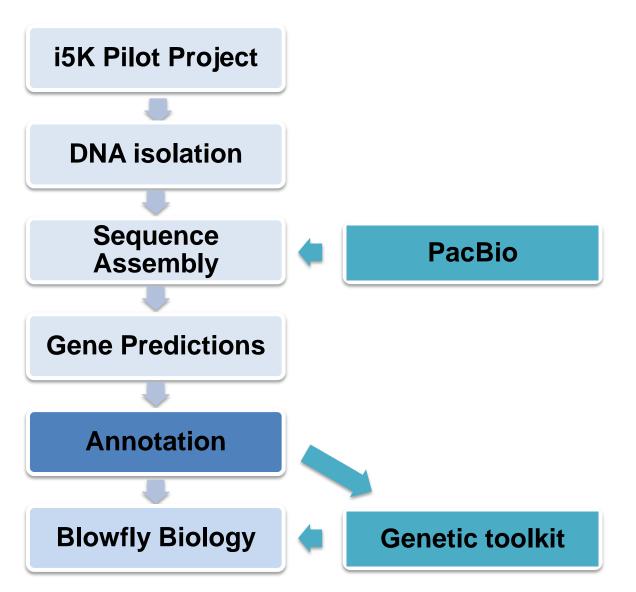

Genome comparison – By the numbers

	Lucilia cuprina	Drosophila melanogaster	Musca domestica
	Blowfly	Vinegar Fly	House Fly
Genome size (Mb)	458	169	750
Chromosomes	5+1	4+1	5+1
N50 scaffold length	744,413	23,011,544	226,573
Coding (%)	6.2	18.3	Not yet known
Number of genes	14,554	15,771	17,508
Repetitive seq. (%)	57.8	36.0	Not yet known
% G&C content in DNA	29	42	35

The Vinegar Fly has been the focus of a large amount of R&D as it is well suited to laboratory studies


Genome annotation – an ongoing process

Scaffolds = 4436



Genome annotation – an ongoing process

Genome annotation – an ongoing process

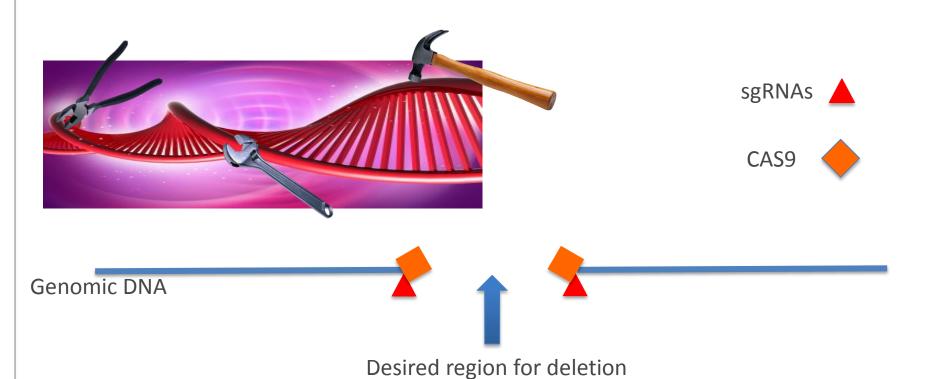
Where to next?

- How do gravid females find sheep?
- What genes are vital for survival and development of
 L. cuprina on sheep? Adult and Larval stages. How can
 we attack them; Vaccines v Insecticides
- How much migration and variation is there in blowfly populations?
- Can a parasite (Wolbachia) assist in the control of this parasite?

.... And how can we resolve these questions?

Creating genetic tools

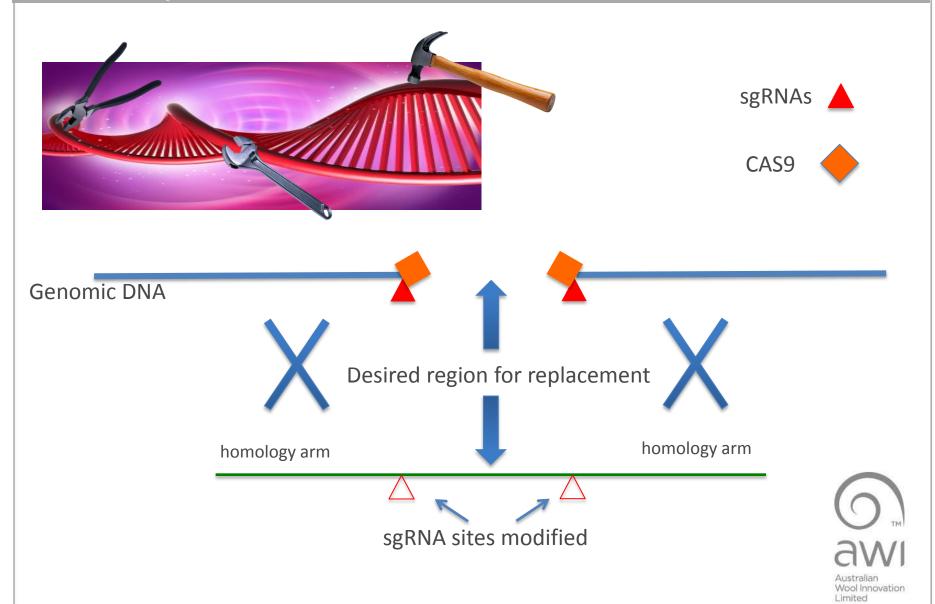
- Model organisms contribute greatly to our knowledge of gene functions
- Analysis in *D. melanogaster* can bridge some of the gaps
- In some cases genetic manipulation of L. cuprina will be required
 - Orphan genes
 - Establishment of myiasis

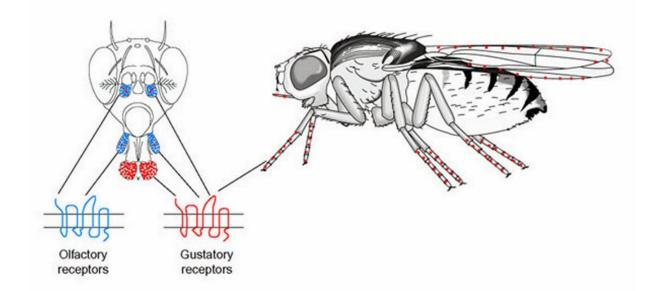

Genome editing using CRISPR

- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
 A recent major breakthrough similar to the discovery of DNA
- Involves a nuclease (CAS9) that cuts DNA in vivo
- Method successfully adapted across a wide range of species
- Routine in our group using D. melanogaster (Vinegar Fly)

Current project

- Create deletion and modification events using CRISPR
- A successful CRISPR event detected in our lab in L. cuprina
- Establishing a stable transgenic CAS9 strain of L. cuprina to optimize throughput

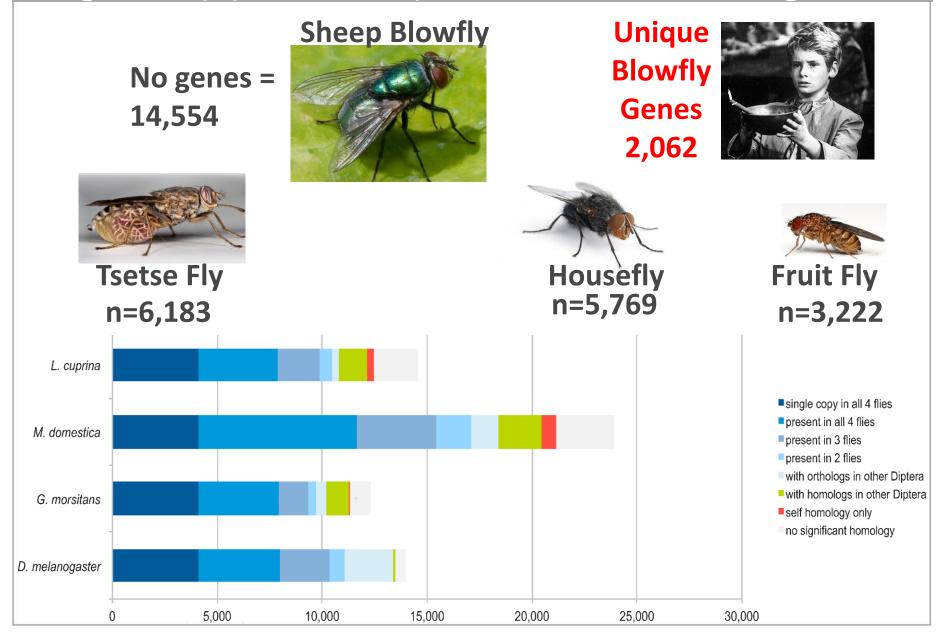

CRISPR/CAS9 in brief


Australian Wool Innovation Limited

CRISPR/CAS9 in brief

How do gravid females find sheep?

- Need to identify all olfactory (smell) receptors
- Determine those expressed in gravid female olfactory organs
 - relative to males and non-gravid females
- Assay olfactory receptors in <u>knockout mutants of blowfly</u> and also in D. melanogaster to determine which are involved in responses
- Goal: Development of superior baits for blowfly trapping

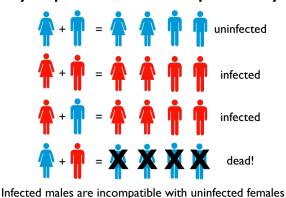


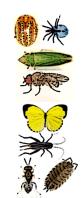
What genes are vital for survival and development of *Lucilia* on sheep?

- Developmental time course transcriptomes
- Identify genes important for establishment and maintenance
- Comparison of gene expression differences between growth on live animals (encounter immune response) vs meat
- Single copy conserved secreted proteins (vaccine candidates)
- CRISPR validation in blowfly

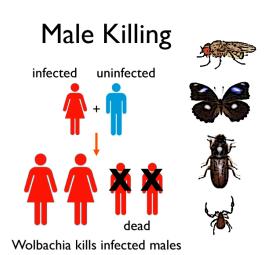
Single-copy counterparts shared among flies

How much migration and variation is there in blowfly populations?



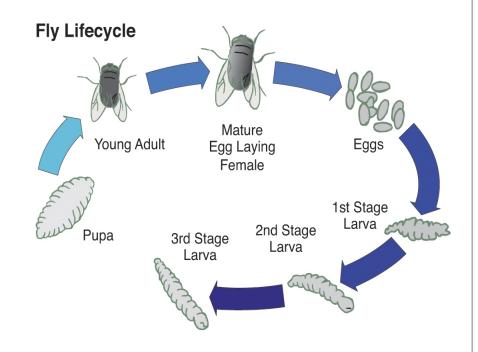

- Critical information for control
 - Vaccine targets must be invariant (always present and do not change)
 - One population or many?
- Will test 20 populations, 30 flies each
- Sequence genome from pooled samples
- Assay variation in candidate genes

Can a parasite assist in the control of this parasite?


Cytoplasmic Incompatibility

Wool Innovation

- Up to 70% of insects species harbor
 Wolbachia
- Does *Lucilia*? (Some evidence to say it might, and lead to pop failure)
- If so, how does it impact fitness?


Summary

The L. cuprina genome will underpin future research

- Establishing genetic methods to manipulate blowfly genes
- Identifying genes critical to establishing a strike
- Characterisation of orphan and critical myiasis maintenance genes
- Unravel population genetics
- Comparative gene analysis

Desirable outcomes:

- New baits, insecticidal therapies and/or an effective vaccine
- Novel intervention strategies (e.g., SIT, CRISPR)

Limited

This publication is based on information presented at the Australian Wool Innovation Limited (**AWI**) National Wool Research and Development Technical Update on Breech Flystrike Prevention held on 12th July 2016. Some information in this publication has been contributed by one or more third parties and licenced to AWI, and AWI has not verified whether this information is correct.

This publication should only be used as a general aid and is not a substitute for specific advice. Any reliance on the information contained in this publication is done at your own risk and to the extent permitted by law, AWI and any third party contributors exclude all liability for loss or damage arising from the use of the information in this publication.

Except to the extent permitted under Copyright Law no part of this publication may be reproduced by any process, electronic or otherwise without the specific written permission of AWI. Neither may information be stored electronically in any form whatsoever without such permission.

AWI gratefully acknowledges the funds provided by the Australian government to support research, development and marketing of Australian wool.