AWI Breech Strike R&D Technical Update Maritime Museum, Sydney 20th August 2014

Tony Schlink DAFWA

Update on Breeding for Breech Strike Resistance in Western Australia

Johan Greeff, John Karlsson, Tony Schlink, Julia Smith and Mt Barker technical staff

Department of Agriculture and Food Western Australia

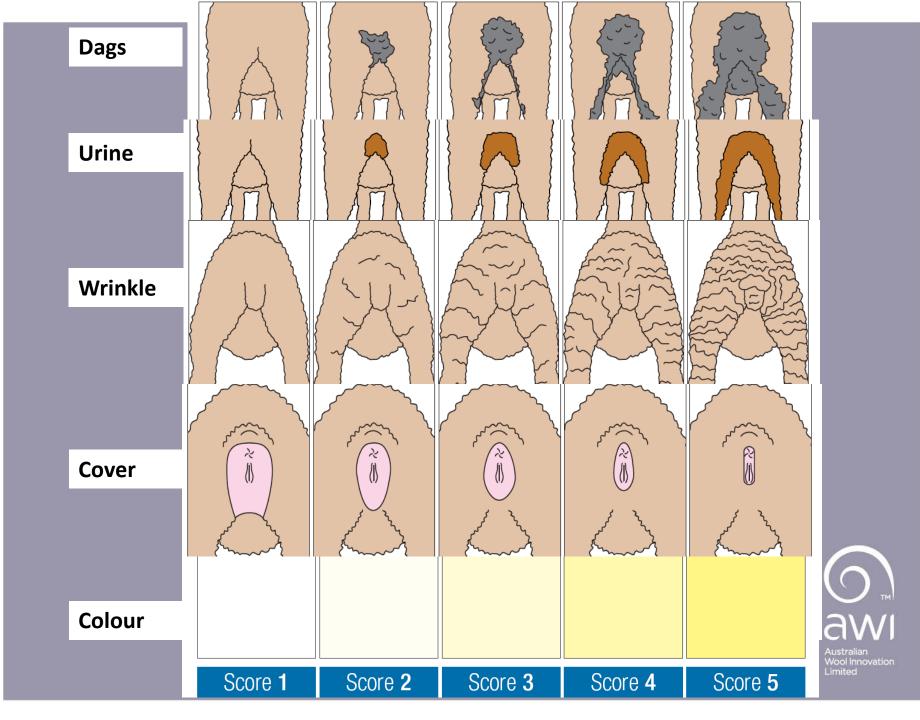
Department of Agriculture and Food

Breech Strike

imited

 Lucilia Cuprina, the "Australian" Sheep Blowfly.
 Introduced to Australia in the early 1900's

Cost to the Australian Sheep industry = \$280 million per year

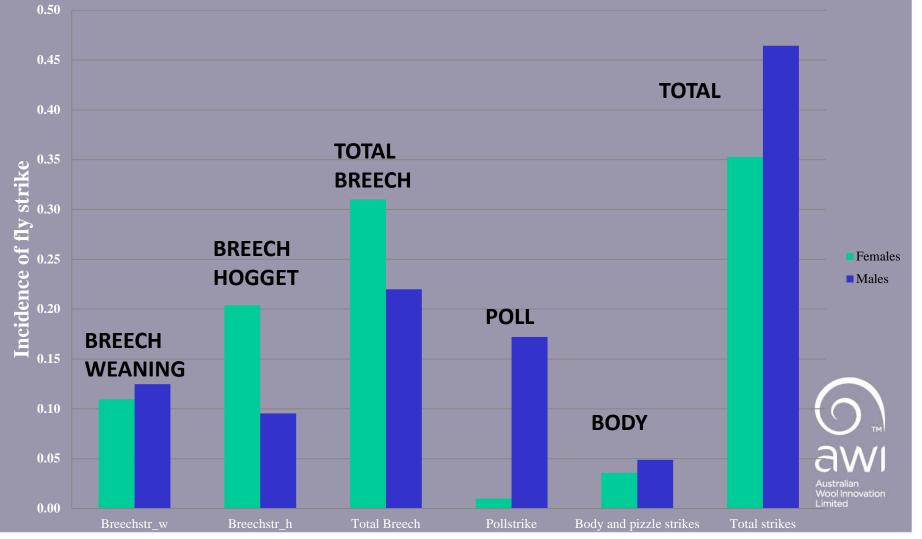


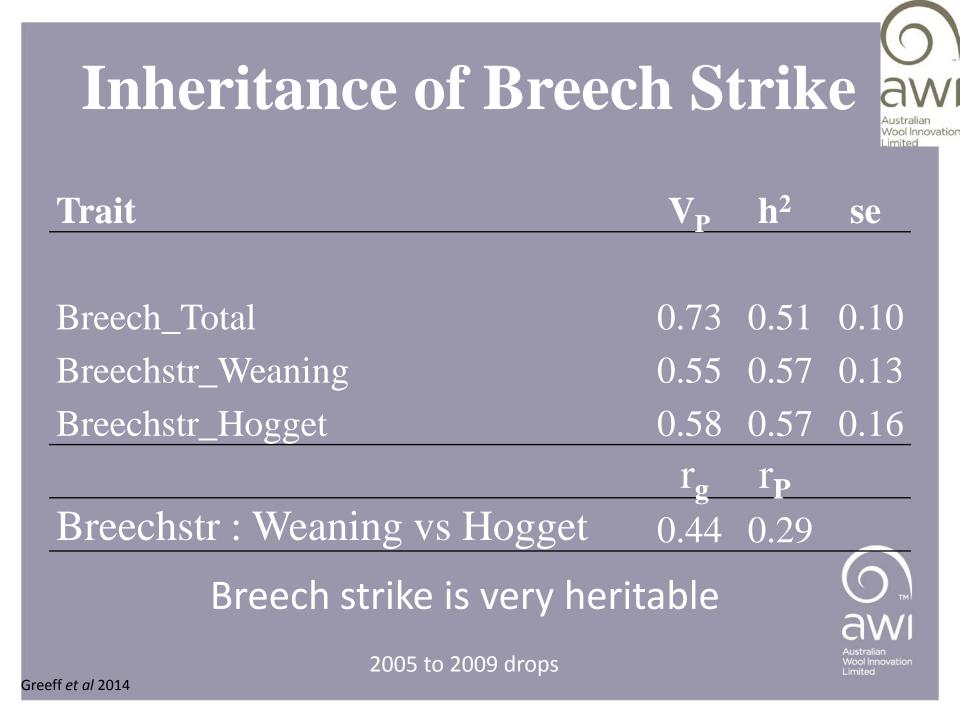
AWI Initiated a New Study in 2006

 Identify and quantify indicator traits for breech strike in un-mulesed sheep in a winter (Mt Barker) and summer (Armidale) rainfall regions

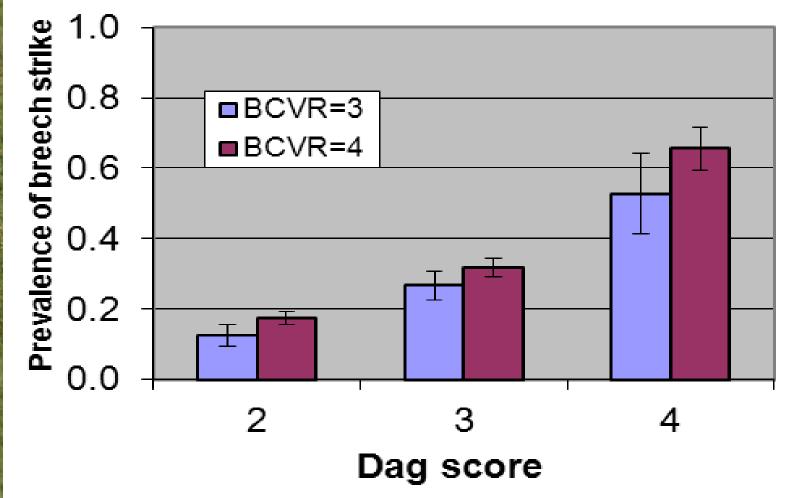
Supporting your success

Management


No Crutching (First 4 years) No Mulesing from 2008 No Jetting all years

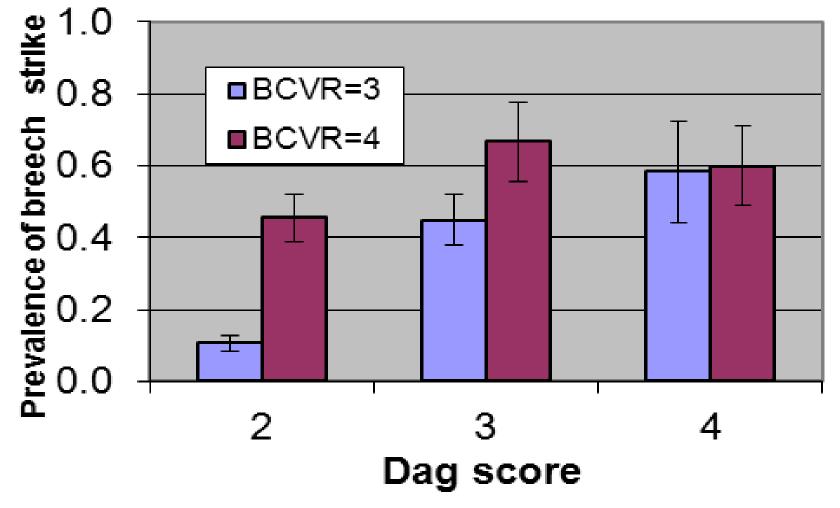

Incidence of Fly Strike over first 4 years Un-mulesed Sheep Mt Barker

Wool Innovation


imited

Sire Progeny Group Differences in Breech Strike Wool Innovation (Birth to Hogget Shearing) imited 120 No preventative treatment Crutched, still no chemical 100 prevention 2006 2007 2008 2009 2010 2011 2012 80 60 % Ave of worst sires 40 20 Ω Sire Ave of Mulesed Sheep Wool Innovation Ave of best sires imited

Incidence of Breech Strike within: Breech Wrinkle score = 1 Winter Rainfall Region


2005 to 2009 drops

imited

Incidence of Breech Strike within: Breech Wrinkle Score = 2 Winter rainfall region

2005 to 2009 drops

Rams from the Resistant vs Susceptible Lines Mt Barker

Australian Wool Innovation Limited

2012 Drop Hoggets Winter Rainfall Region

Susceptible

Resistant

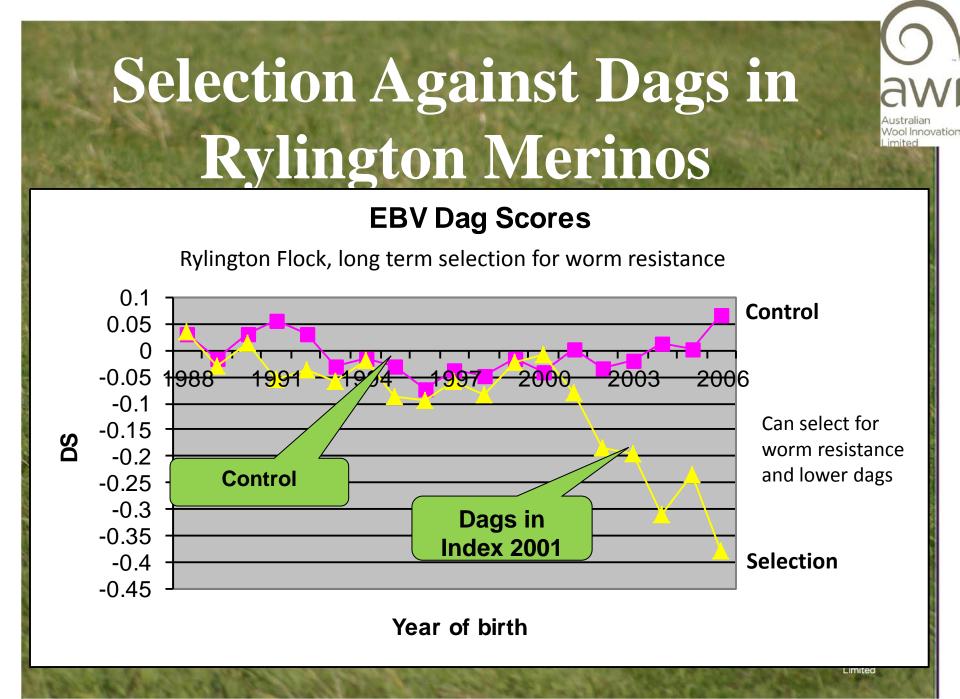
imited

Key Indicator Traits in Winter Rainfall Environment

Trait	Correlated Response/Direct Response
Dags at hogget	0.60
Urine stain at weaning	0.59
Dags in spring	0.57
Neck wrinkle marking	0.47
Neck wrinkle hogget	0.47
Body wrinkle hogget	0.45
Dags post weaning	0.45
Dags yearling	0.44
Face cover at weaning	0.44
Face cover at yearling	0.39
Breech wrinkle at yearling	0.39
Dags at weaning	0.36
Dags at marking	0.34 CIVVI
Neck wrinkle post weaning	0.34

 $\mathbf{0.J}$

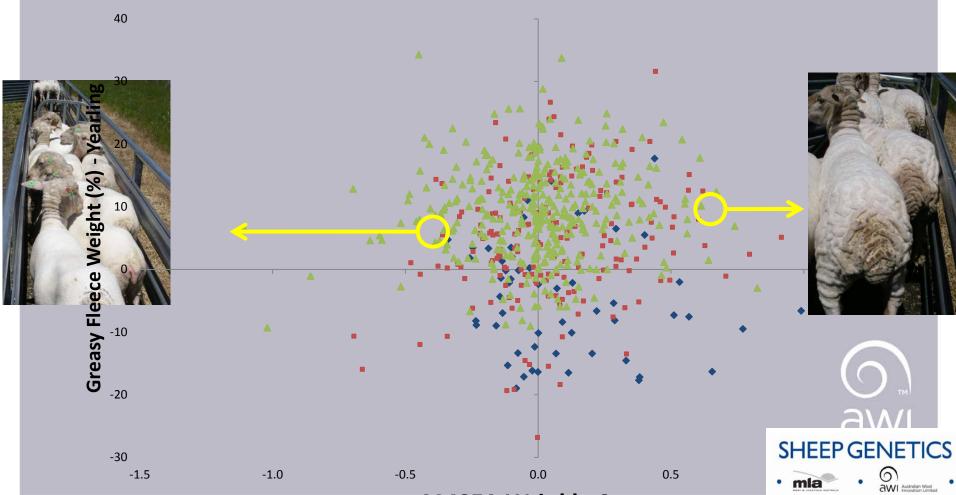
Importance of Key Indicator Traits


Mediterranean Environment South West WA (Mt Barker)

- 1. Dags
- 2. Urine stain
- 3. Wrinkle
- 4. Face cover

(Very different to CSIRO Armidale Flock)

Wool Innovation



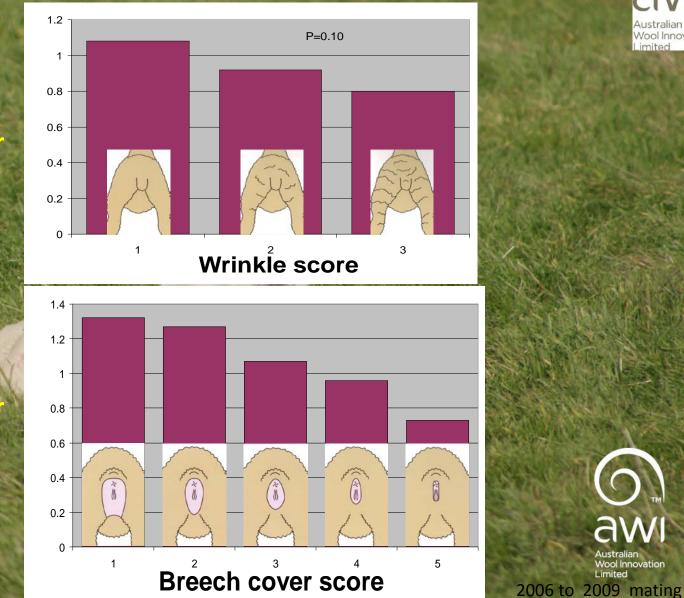
WRINKLES AMSEA Wrinkle Score x Greasy Fleece Weight ASBV (560 AMSEA Sires; sorted by YFD)

Australian Wool Innovation

Limited

◆ Superfine - YFD < -2.5 ■ Fine - YFD <-1.0 ▲ Medium - YFD > -1.0

AMSEA Wrinkle Score

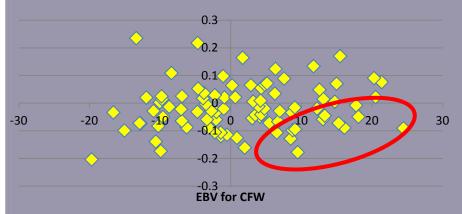

Reproduction

Australian

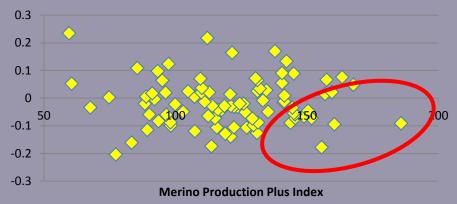
ustralian

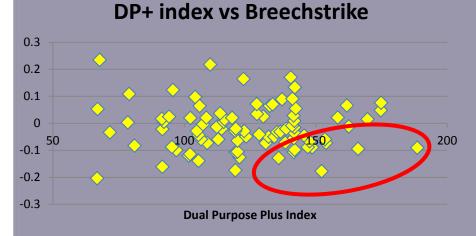
Wool Innovation Limited

Wool Innovation Limited

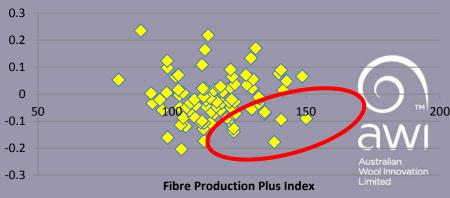


Lambs weaned per ewe joined


Lambs weaned per ewe joined


Relationship Between Production and Breech strike (Birth to hogget shearing)

CFW vs Breechstrike



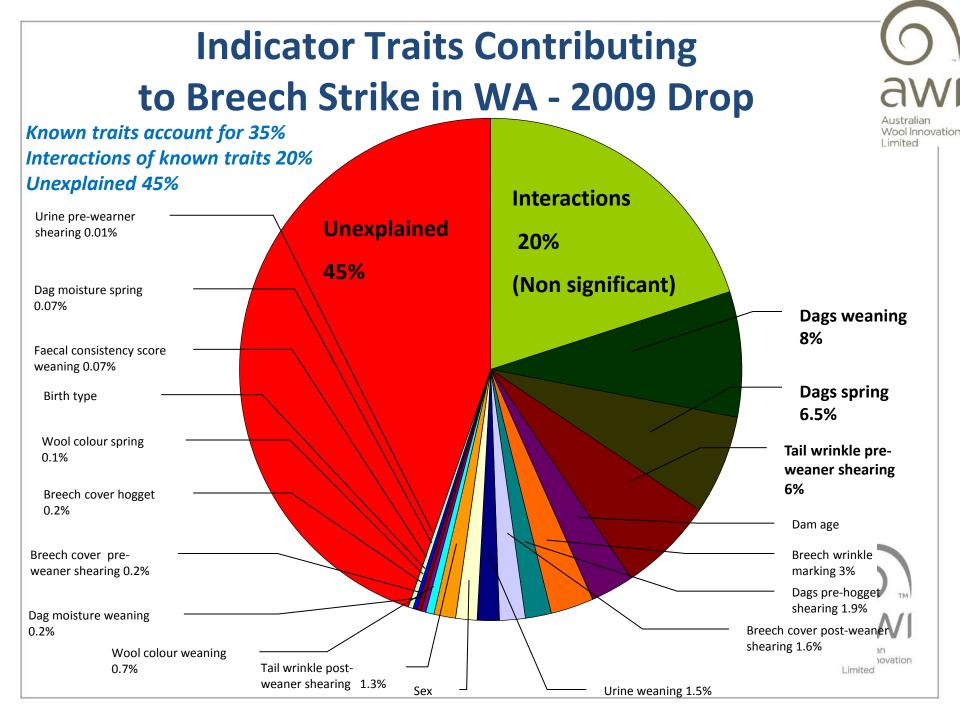
MP+ vs Breechstrike

FP+ index vs Breechstrike

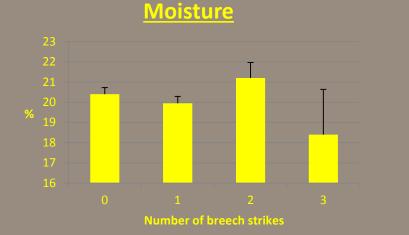
Sheep Genetics Public Web Search

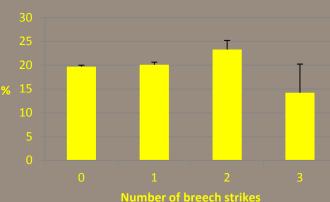
	1															
Animal ID	YWT	YFAT	YEMD	YCFW	YFD	YDCV	YCUR	YSS	YWEC	EBWR	EBCOV	LDAG	FP+	MP+	<u>DP+</u> ↓	<u>7%DP</u>
MT BARKER AWI BREECH FLOCK-072614	7.1	0.2	1.0	24.7	-1.6	-0.2	-4.4	0.8	43	0.2	0.3	-0.5	150	186	189	191
	94%	76%	83%	86%	91%	88%	90%	84%	84%	93%	92%	89%	67%	58%	52%	37%
MT BARKER AWI BREECH FLOCK-103603	8.4	0.2	0.4	29.9	-1.2	-0.8	-16.2	-0.2	-26	0.0	-0.4	0.4	146	181	185	187
	78%	61%	67%	70%	77%	68%	75%	64%	72%	87%	89%	73%	47%	42%	37%	30%
MT BARKER AWI BREECH FLOCK-030549	10.5	0.1	1.1	9.1	-0.2	-1.6	-0.5	4.8	-36	-0.1	-0.5	0.1	144	177	182	178
	91%	60%	69%	83%	89%	85%	88%	81%	83%	90%	91%	87%	61%	51%	43%	36%
MT BARKER AWI BREECH FLOCK-112817	8.8 77%	-0.3 55%	0.3 63%	19.2 68%	-1.8 76%	0.2 66%	-7.0 74%	-1.9 63%	2 65%	-0.1 80%	0.1 80%	-0.2 67%	148 45%	183 40%	178 35%	184 29%
MT BARKER AWI BREECH FLOCK-112903	9.3	0.5	1.8	13.8	-0.5	0.3	2.1	-0.7	-56	-0.2	-0.1	-0.4	134	159	171	174
	79%	57%	65%	70%	77%	69%	76%	65%	70%	81%	83%	71%	47%	41%	35%	30%
MT BARKER AWI BREECH FLOCK-072500	5.9	0.8	1.9	13.4	-0.4	-0.9	-0.8	2.1	-75	-0.1	0.2	0.2	142	157	169	171
	93%	74%	81%	84%	90%	87%	89%	83%	82%	93%	91%	88%	69%	64%	60%	36%
MT BARKER AWI BREECH FLOCK-103521	11.0	-0.3	0.8	21.3	-0.2	-0.8	-4.6	3.3	9	-0.2	0.6	-0.2	131	162	159	167
	92%	56%	65%	80%	86%	83%	85%	78%	86%	92%	89%	86%	56%	46%	37%	35%
MT BARKER AWI BREECH FLOCK-114504	5.1	0.2	0.4	15.2	0.0	-1.0	-2.8	2.1	-21	-0.2	-0.1	0.1	130	153	157	153
	80%	55%	63%	67%	76%	66%	74%	63%	71%	83%	88%	71%	47%	43%	38%	30%
MT BARKER AWI BREECH FLOCK-073707	11.8	0.5	1.5	12.7	0.8	-0.9	-0.1	3.1	-3	-0.2	-0.4	0.0	118	145	153	155
	93%	74%	82%	85%	91%	88%	90%	84%	84%	93%	92%	89%	73%	69%	66%	36%
MT BARKER AWI BREECH FLOCK-114901	7.6	0.3	1.0	7.5	0.2	-0.9	6.0	4.2	-80	0.0	0.0	0.1	132	149	152	148
	74%	56%	64%	68%	76%	67%	75%	63%	63%	78%	74%	65%	46%	41%	36%	28%
MT BARKER AWI BREECH FLOCK-093621	5.9	0.0	0.7	9.7	-1.4	-0.7	-5.8	1.0	-46	0.0	-0.1	-0.2	138	156	152	154
	89%	76%	83%	82%	88%	84%	87%	81%	82%	91%	89%	85%	63%	55%	50%	35%
	8.3	04	15	10.5	0.5	-0.5	-3.6	12	-37	0.0	-0.2	-0 1	116	139	148	151
															Jinternet	

Australian Wool Innovatic Limited


Conclusions

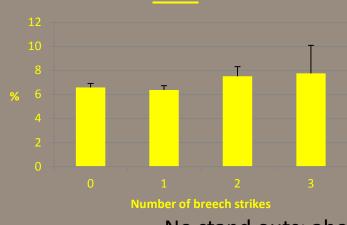
Breech strike heritable Identified indicators traits Indicator traits – heritable

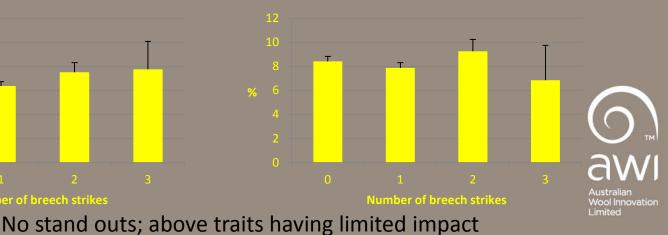

imited

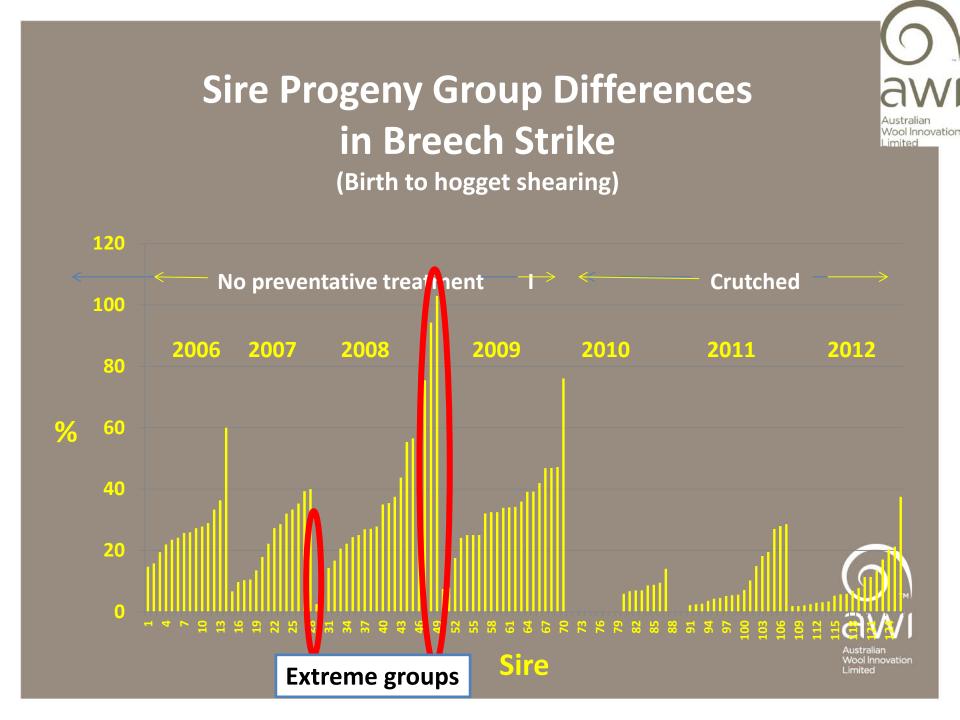

What Explains the 45% Unexplained Variation?

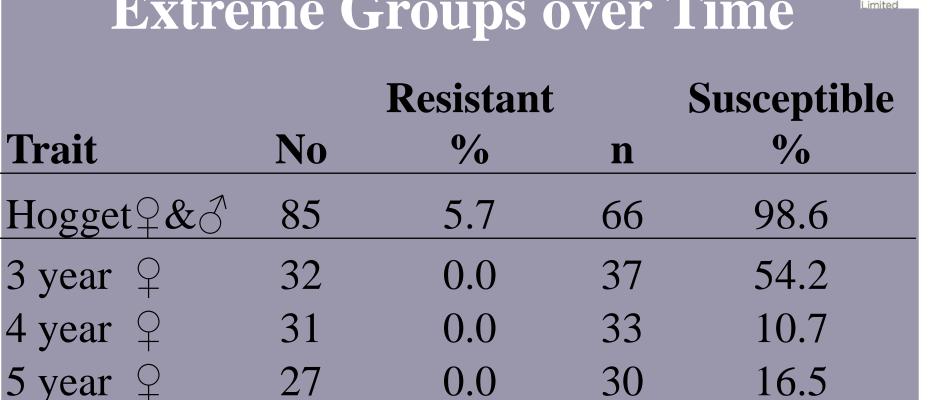
Wax, suint, moisture? Odour – specific chemicals? Immune response? Others?

Effect of Wax, Suint, Dust and **Moisture on Breech Strike**




Wax


Australian Wool Innovation Limited



Incidence of Breech Strike of Extreme Groups over Time

All ewes were regularly crutched prior to lambing

Australian Wool Innovation Limited

Indicator Traits at W<u>eaning</u> of Extreme Sire Progeny Groups for Breech Strike

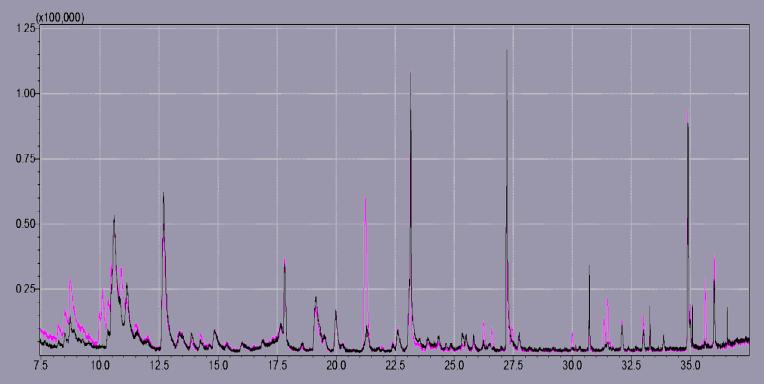
Res	latant	0		
	istant	Susce	P-value	
Sire 1	Sire 2	Sire 3	Sire 4	
2.5	8.9	102.9	94.3	<0.001
41	44	35	31	
28.8	25.2	23.3	24.3	<0.001
1.3	1.3	1.7	1.6	< 0.001
1	1	1	1.1	0.35
1.2	1.1	1.1	1.2	0.12
1.2	1.5	1.7	1.6	< 0.001
3.6	3.3	3.6	3.5	0.15
2.8	2.7	3.4	3.1	< 0.001
1.2	1	1.3	1.3	0.02
2.6	2.5	2.6	2.5	0.10
	2.5 41 28.8 1.3 1 1.2 1.2 3.6 2.8 1.2	2.5 8.9 41 44 28.8 25.2 1.3 1.3 1 1 1.2 1.1 1.2 1.5 3.6 3.3 2.8 2.7 1.2 1	2.5 8.9 102.9 41 44 35 28.8 25.2 23.3 1.3 1.3 1.7 1 1 1 1.2 1.1 1 1.2 1.1 1.1 1.2 1.5 1.7 3.6 3.3 3.6 2.8 2.7 3.4 1.2 1 1.3	2.58.9102.994.34144353128.825.223.324.31.31.31.71.61111.11.21.11.11.21.21.51.71.63.63.33.63.52.82.73.43.11.211.31.3

Australian Wool Innovation

Indicator Traits at H<u>ogget Age</u> of Extreme Sire Progeny Groups for Breech Strike

Traits	Resistant		Susce	P- value	
	Sire 1	Sire 2	Sire 3	Sire 4	
Breech strike%	2.5	8.9	102.9	94.3	<0.001
Progeny No's	41	44	35	32	
Dag score	2.1	2.4	3.3	3.3	0.22
Breech wrinkle	1.0	1.0	1.0	1.0	0.90
Breech cover	2.7	2.6	2.8	2.7	0.20
Urine stain	1.2	1.3	1.5	1.4	<0.01
Wool colour	2.5	2.7	2.8	2.7	0.03

Australian Wool Innovation Limited

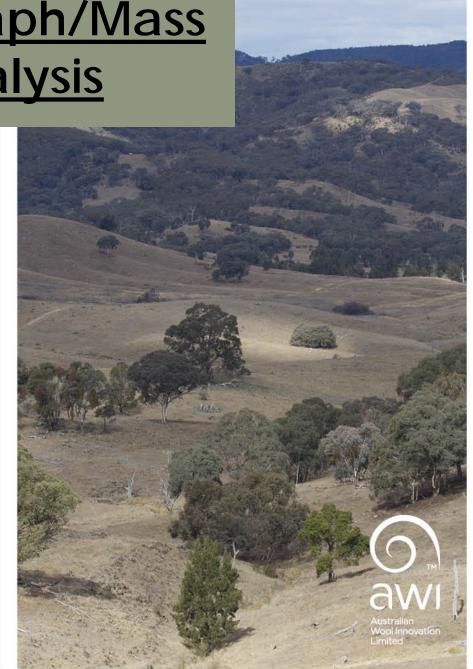

Wool Innovation Limited

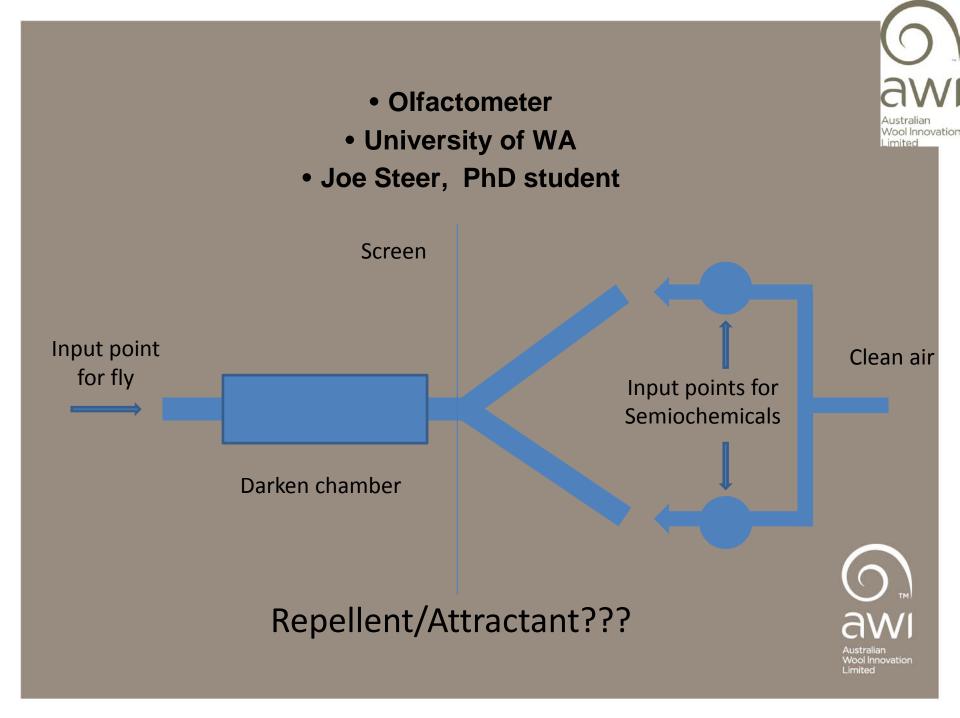
Video showing novice trained dogs identifying wool samples from resistant lines and ignoring wool samples from susceptible lines

of Dete	ection	Aust
Dogs		Woo
Accu Resistant	uracy Susceptible	
100%	100%	
82%	92%	
	Dogs Accu Resistant	DOGS Accuracy Resistant Susceptible 100% 100%

Chemical Odours Components

Gas chromatograph profile of odour components from a resistant and a susceptible sheep (University of WA - Joe Steer)


Australian Wool Innovation


Wool Innovation Limited

Gas Chromatograph/Mass Spectrometer Analysis

Preliminary analysis (n=74)

- from flock extremes
- 310 peaks identified
- ~30 peaks account for 80% of variation in Breeding Value for Breech Strike
- All 2012 and 2013 drop crutchings sampled July 2014

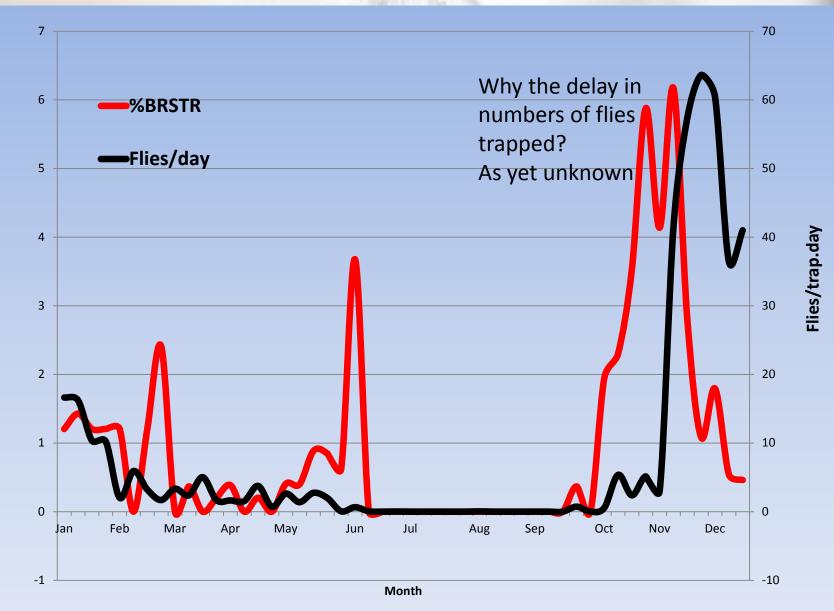
MICRO – ORGANISMS

Only 5% bacteria can normally be cultivated DNA – Test for >4000 bacterial species

Identify micro-organisms in & on skin & on wool 6 Surplus rams tested 3 resistant and 3 susceptible rams

Micro-Organism Differences Between Lines

2012 and 2013 drops to be skin sampled in September 2014


2014 drop skin sampled at weaning

Taxon	Res/Susc
Armatimonadetes	only R
Chlorobi	only R
NKB19	only R
Nitrospirae	only R
OD1	only R
SR1	only R
TM6	only R
WPS-2	only R
WS2	only R
WYO	only R
Thermi	12.423
Planctomycetes	7.102
Cyanobacteria	6.317
Acidobacteria	5.643
Gemmatimonadetes	5.260
Chloroflexi	3.371
Actinobacteria	2.291
Proteobacteria	2.022
BRC1	1.679
Fibrobacteres	1.319
Fusobacteria	1.236
Bacteroidetes	0.985
TM7	0.793
Elusimicrobia	0.400
Deferribacteres	0.314
Firmicutes	0.237
Spirochaetes	0.217
Verrucomicrobia	0.201
Tenericutes	0.121
Lentisphaerae	0.094

Australian Wool Innovation Limited

Limited Opportunities for Strike!

Breech in hogget ewes (%)

Data from 2006 to 2013

Fly Numbers by Location

What Influences Fly Distribution?

•Sheep

- Sheep in paddock
- Sheep absent

Trap location

- Trees
- Open
- Near water

- = 7 flies/day
- = 4 flies/day

- = 6 flies/day
- = 6 flies/day
- = 3 flies/day

Contributing Flocks – WA and NSW

Mount Barker, Western Australia

2005 drop ewe weaners:

- Billandri
- Cherry Tree Estate
- J Coole & Co
- Felspar Pty Ltd
- GSARI
- C D, D N & S H Herbert
- Kilandra Pastoral Co
- Majuba
- I & D Robertson
- W M & V A Webb

Armidale, New South Wales

Ewes for 2006 mating:

(fine wool base)

CSIRO Armidale resource flock

2005 drop ewe weaners:

Auchen Dhu Park Cressbrook Gostwyck Goyarra Poll Hazeldean Mirramoona Quambaloo Poll Ruby Hills Whyworry Park Yalgoo

Ewes for 2006 mating:

DAFWA Research Stations:

- Badgingarra
- GSARI
- Mt Barker

Sire flocks 2006 mating:

- Calcookara (Cojack)
- Centre Plus
- Cherry Tree Estate
- Cranmore Park
- Rylington Merino
- Toland
- Yeendalong Farm (Abbott)
- GSARI (control)
- Sire flocks 2007 mating
- Wallinar
- Margan
- Centre Plus WA
- Calcookara (Garreth)
- Majuba
- Rylington Merino

Sire flocks 2006 mating:

- Calcookara
- Centre Plus
- Cressbrook
- Parkdale
- Quambaloo Poll
- Ruby Hills
- Severn Park
- Toland
- T13 (control)

Australian Wool Innovation

imited

Australian Wool Innovation Limited

Thank you

Department of **Agriculture** and **Food**

Visit agric.wa.gov.au

Supporting your success

