2018 BREECH FLYSTRIKE RD&E TECHNICAL UPDATE

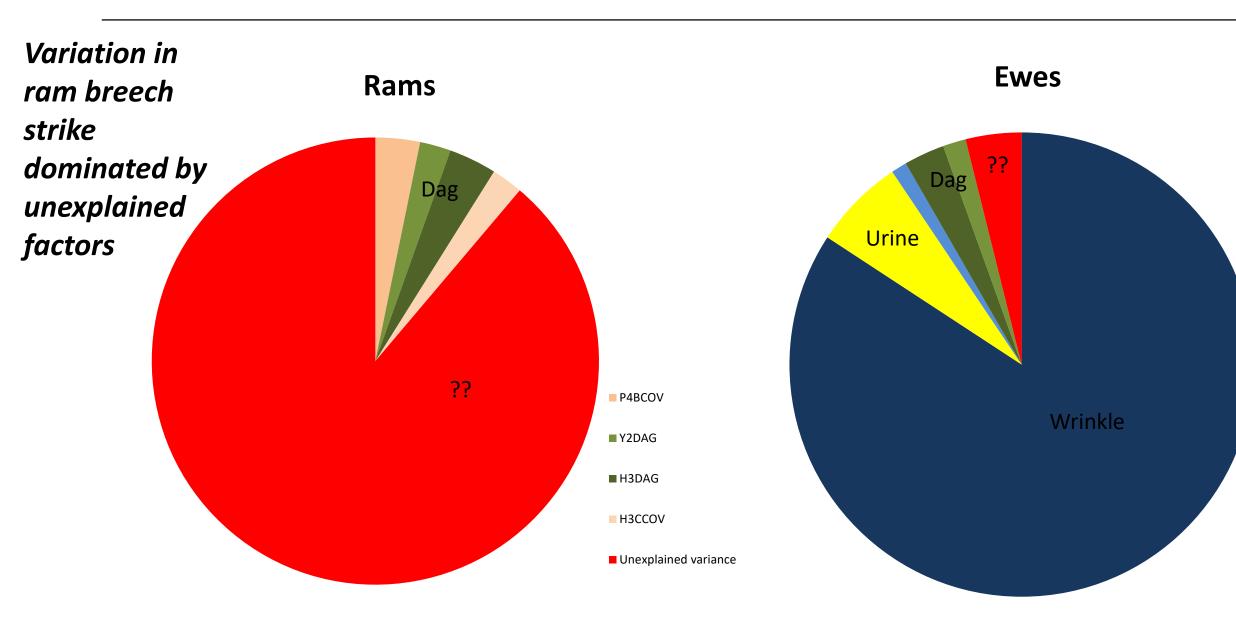
Industry Progress in Breeding for Breech Strike Resistance

Geoff Lindon – AWI 17 July 2018

Australian Wool Innovation Limited

Genetic Trends in Key Welfare and Production Traits (ASBVs provide the best 'objective' data available)

- What are the risk traits
- Merino Breed ASBV trends
- Merino Type ASBV trends


 Dual Purpose
 Fine
 - \circ Super Fine
- Dohne Trends
- Other measures

Where to from here?

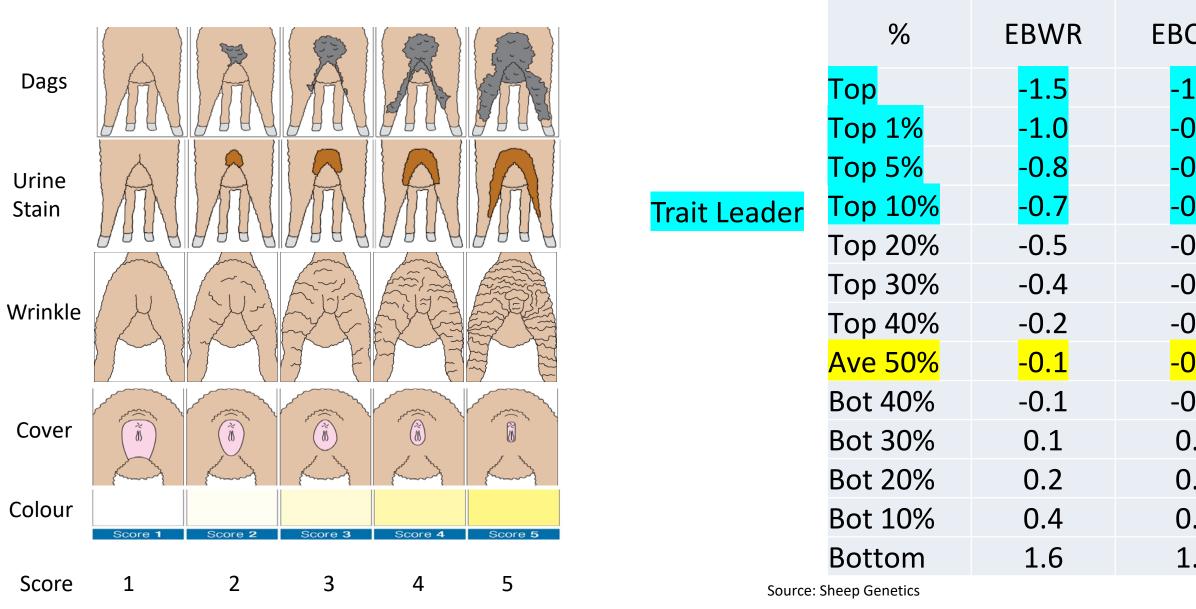
National Breech Flystrike RD&E Technical Update 2018

Industry Progress in Breeding for Breech Strike Resistance – Risk Traits

Source: AWI Breeding for Breech Strike Resistance Project, DAFWA Mt Barker 2010 to 2013

Variation in ewe breech strike dominated by breech wrinkle

P4BRWR


H7BDWR

HDAG

H2DAG

Unexplained variance

Industry Progress in Breeding for Breech Strike Resistance – Risk Traits

COV	LDAG
3	<mark>-0.7</mark>
).7	<mark>-0.4</mark>
).5	<mark>-0.3</mark>
) <mark>.4</mark>	<mark>-0.3</mark>
).3	-0.2
).2	-0.1
).2	-0.1
).1	<mark>-0.1</mark>
).1	0.0
.0	0.0
.1	0.1
.2	0.2
.3	1.0

Merino Breed ASBVs

Gains

YEAR	Animal No	AWT	FAT	EMD	AGFW	AFD	ASL	ASS	WEC	NLW	EBWR	ECOV	LDAG	FPP	MPP	DPP
Drop	Number	Kg	mm	mm	%	FD	mm	N/Kt	%	%	Score	Score	Score	Index		Index
2001	74 552	0.2	0.00	0.11	0.1	4.0	1 1	0.2	2.2	1 00/	0.1	0.1	0.0	110.1	1170	115.0
2001	74,552	-0.3	-0.02	0.11	-0.1	-1.2	-1.4	-0.3	2.2	-1.8%	<mark>-0.1</mark>	<mark>-0.1</mark>	<mark>0.0</mark>	119.1	117.0	115.0
2006	63,286	1.1	0.02	0.25	0.8	-1.2	0.7	0.1	-5.2	-2.0%	<mark>-0.1</mark>	<mark>0.0</mark>	<mark>0.0</mark>	121.9	121.3	119.9
2011	92 674	റ 1	0.02	0.24	2 E	1 1	2 1	0.2	-6.6	1 70/	<mark>-0.2</mark>	<mark>-0.1</mark>	0.0	124 0	175 6	175 1
2011	83,674	2.1	0.02	0.34	2.5	-1.1	3.1	0.2	-0.0	-1.7%	-0.2	-0.1	<mark>0.0</mark>	124.0	125.6	125.1
2016	109,074	3.0	0.02	0.34	5.5	-1.0	5.0	0.3	-11.8	0.8%	<mark>-0.2</mark>	<mark>-0.1</mark>	<mark>0.0</mark>	129.7	135.3	135.8

Medium Merino Type ASBVs

YEAR	Animal No	AWT	FAT	FMD	AGFW	AFD	ASL	ASS	WEC	NLW	EBWR	ECOV	LDAG	FPP	MPP	DPP
								A 88					LDAG			
Drop	Number	Kg	mm	mm	%	FD	mm	N/Kt	%	%	Score	Score	Score	Index	Index	Index
2001	10,756	2.0	-0.2	-0.5	5.5	-0.1	2.5	-0.3	0.8	1.5%	<mark>-0.2</mark>	<mark>0.0</mark>	<mark>0.1</mark>			122.1
2006	9,407	3.8	0.1	0.5	4.3	-0.3	6.1	-0.2	-12.4	7 /10/	<mark>-0.3</mark>	<mark>-0.1</mark>	<mark>0.1</mark>			129.3
2000	9,407	5.0	0.1	0.5	4.5	-0.5	0.1	-0.2	-12.4	2.4/0	-0.5	-0.1	0.1			129.5
2011	16,592	4.0	0.1	0.6	3.9	-0.5	8.2	-0.3	-15.6	0.5%	<mark>-0.4</mark>	<mark>-0.1</mark>	<mark>0.0</mark>			129.7
			0.1		0.0		0.1	0.0		0.070						
2016	24,870	4.1	0.0	0.4	7.0	-0.6	8.0	-0.6	-26.1	2.9%	<mark>-0.7</mark>	<mark>-0.3</mark>	<mark>-0.1</mark>			137.3

Fine Merino Type ASBVs

YEAR	Animal	AWT	FAT	EMD	AGFW	AFD	ASL	ASS	WEC	NLW	EBWR	ECOV	LDAG	FPP	MPP	DPP
Drop	Number	Kg	mm	mm	%	FD	mm	N/Kt	%	%	Score	Score	Score	Index	Index	Index
2001	50,454	0.2	-0.05	0.03	4.0	-1.0	-0.1	-0.4	4.2	-2.0%	<mark>0.0</mark>	<mark>-0.1</mark>	<mark>0.0</mark>		123.7	
2006	41,476	1.4	-0.02	0.16	4.7	-0.9	2.3	0.2	-5.8	-1.9%	<mark>-0.1</mark>	<mark>-0.1</mark>	<mark>0.0</mark>		126.6	
2011	52.022	2.2	0.01	0.00		1.0		0.4	2.2	0.70/	0.4	0.4	0.0		120.0	
2011	52,932	2.3	0.01	0.30	4.6	-1.0	4.0	0.4	-2.3	-0.7%	<mark>-0.1</mark>	<mark>-0.1</mark>	<mark>0.0</mark>		130.0	
2016	59,181	3.2	0.01	0.32	7.0	-1.0	5.7	0.6	-8.3	2.7%	<mark>-0.2</mark>	<mark>-0.1</mark>	<mark>0.0</mark>		140.0	

Super Fine Merino Type ASBVs

YEAR	Animal No	AWT	FAT	EMD	AGFW	AFD	ASL	ASS	WEC	NLW	EBWR	ECOV	LDAG	FPP	MPP	DPP
Drop	Number	Kg	mm	mm	%	FD	mm	N/Kt	%	%			Score		Index	Index
2001	22,485	-2.5	0.04	0.31	-10.0	-2.1	-5.3	-0.3	3.3	-2.4%	<mark>-0.1</mark>	<mark>-0.1</mark>	<mark>0.1</mark>	114.7		
2006	17,767	-1.8	0.05	0.20	-8.2	-2.3	-4.8	-0.0	-2.3	-5.0%	<mark>-0.1</mark>	<mark>0.0</mark>	<mark>0.0</mark>	120.0		
	45.000		0.04	0.00	4.0			0.4	6.4	5 00/	.	0.4	0.4	404.0		
2011	15,033	-0.8	-0.01	0.09	-4.8	-2.3	-4.1	-0.1	-6.1	-5.3%	<mark>0.0</mark>	<mark>0.1</mark>	<mark>0.1</mark>	124.8		
2016	15,039	0.5	-0.02	0.14	-0.1	-2.1	-1.7	0.1	-20.8	-3.9%	<mark>0.2</mark>	<mark>0.1</mark>	<mark>0.0</mark>	131.8		

Dohne ASBVs (not comparable to Merino ASBVs)

YEAR	Animal No	AWT	FAT	EMD	AGFW	AFD	ASL	ASS	WEC	NLW	EBWR	ECOV	LDAG	FPP	MPP	DPP
Drop	Number	Kg	mm	mm	%	FD	mm	N/Kt	%	%	Score		Score	Index	Index	Index
2001	16,457	0.9	0.02	0.25	0.0	-0.3			3.7	0.5%	-	0.0	0.0			107.1
2006	34,296	1.9	0.04	0.34	-0.0	-0.4			3.8	0.6%	•	0.0	0.0			111.6
2011	20,306	2.7	0.05	0.50	0.4	-0.3			6.1	1.3%	-	0.0	0.0			115.9
2016	13,495	3.8	0.07	0.75	1.5	-0.4			6.1	3.0%	•	0.1	0.0			127.2

NM studs have difficulty collecting Wrinkle data given "no or little variation"

Summary 1

- Trends are responding to clear market forces, worms, fleece weight, body weight
 - On farm cost of worms 2.5 times the cost of fly strike Improved wool market has increased demand for higher fleece weight • On going demand for bigger Merinos
- Mediums type showing impressive gains for improved breech traits (Due to NM and demand for ewes suited to prime lamb production)
- No significant trend for Merino fat & muscle in the last 10 years (part linked to fleece weight)

Summary 2

- Dohne; strong muscle and body weight trend
- Large gain in fleece weight for Super Fines (to stay viable) impacting on breech traits
- New ram breeders who join the "Breeding Value" system can favourably or unfavourably impact on genetic trends and do mask the gains that can be made at the individual ram breeder level. Breeders in the top 25% percentile for an Index are collectively making higher annual gains than those in the lower percentiles, (due mostly to deeper pedigrees with information and knowledge in how to best create and use breeding values.)
- Breech traits are still new in genetic terms (first released late 2009)

	%	EBWR	EBCOV	LDAG
	Top	<mark>-1.5</mark>	<mark>-1.3</mark>	<mark>-0.7</mark>
	Top 1%	<mark>-1.0</mark>	<mark>-0.7</mark>	<mark>-0.4</mark>
	Top 5%	<mark>-0.8</mark>	<mark>-0.5</mark>	<mark>-0.3</mark>
Trait Leader	Top 10%	<mark>-0.7</mark>	<mark>-0.4</mark>	<mark>-0.3</mark>
	Top 20%	-0.5	-0.3	-0.2
	Top 30%	-0.4	-0.2	-0.1
	Top 40%	-0.2	-0.2	-0.1
	Ave 50%	-0.1	-0.1	-0.1
	Bot 40%	-0.1	-0.1	0.0
	Bot 30%	0.1	0.0	0.0
	Bot 20%	0.2	0.1	0.1
	Bot 10%	0.4	0.2	0.2
	Bottom	1.6	1.3	1.0

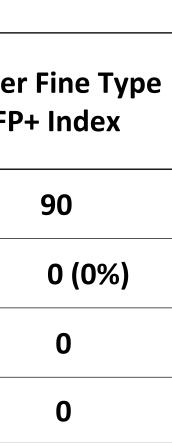
Source: Sheep Genetics

re target ASBVs for NM undue reliance on als?

; -0.3 to -1.0?

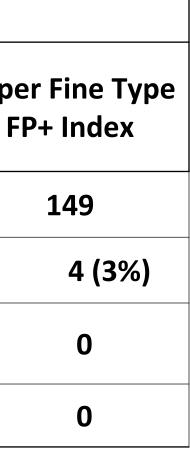
portant in high dag irrelevant in low Intry

1 reduction improves


ver the initial score, the ffective mulseing is in reducing risk.

MERINOSELECT WEBSITE CURRENT SIRE SEARCH									
Web Search Criteria Number of Current Sires Top 10%	Merino Breed MP+ Index	Medium Type DP+ Index		Supe FF					
Index Trait Leader (ITL)	541	139	336						
ITL & Wrinkle Trait Leader	32 (6%)	32 (23%)	20 (6%)						
ITL & Wrinkle & Cover	8	5	7						
ITL & Wrinkle & Cover & Dags	3	3	2						

Very difficult to find sires in top 10% for index and breech traits

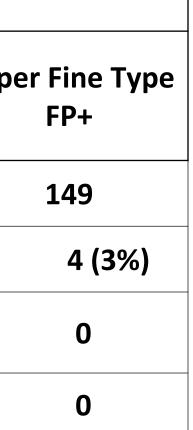

Source: Sheep Genetics

MERINOSELECT WEBSITE CURRENT SIRE SEARCH										
Web Search Criteria Number of Current Sires Top 20%	Merino Breed MP+ Index	Medium Type DP+ Index	Fine Type MP+ Index	Sup F						
Index Top 20%	839	247	508							
Index and Wrinkle	109 (13%)	90 (36%)	50 (10%)							
Index, Wrinkle & Cover	24	20	20							
Index, Wrinkle, Cover & Dags	11	4	10							

Still difficult to find sires in top 20% for index and breech traits, especially for Super Fine Type, need to outcross with Fine Types

Source: Sheep Genetics

MERINOSELECT WEBSITE CURRENT SIRE SEARCH										
Web Search Criteria Number of Current Sires Top 20%	Merino Breed MP+	Medium Type DP+	Fine Type MP+	Sup						
Index	839	247	508							
Index and Wrinkle	109 (13%)	<mark>90</mark> (36%)	50 (10%)							
Index, Wrinkle & Cover	24	20	20							
Index, Wrinkle, Cover & Dags	11	4	10							


Add in YWEC @ top 20% and No. of sires fall from 90 to just 2 Not easy even in Mediums in high worm and dag country. So top 20% still too high, need to lower to top 30% or 40%

independent culling over time, if welfare enhanced indexes are possible in future

National Breech Flystrike RD&E Technical Update 2018

Value in index selection approach rather than

Source: Sheep Genetics

Industry Progress in Breeding for Breech Strike Resistance – Other

Other Trends

Increasing breech trait records; Records per year in MERINOSELECT

DROP	WRINKLE	COVER	DAG
2001	7,689	2,230	2,817
2006	12,784	10,819	8,147
2011	38,418	33,451	23,002
2016	33,575	27,887	22,859

Source Sheep Genetics

- Swing to Polls, reduction in Poll Strike
- Anecdotal reduction in Body Strike (reduced FD & FDCV over the last 30 years)

Where to from here

- Increase number of animals assessed for breech traits, increase finding curve benders
- Add neck & body wrinkle to breech wrinkle ASBV (assist NM Merino & Dohne Studs, **)
- Create Urine Stain and Faecal Consistency ASBVs
- Find unexplained factors, may reduce emphasis on wrinkle and dags
- Create welfare enhanced indexes, an improvement on using independent culling levels
- Increase focus on increasing the number of adult age records
- Improve worm egg count monitoring at lower burdens
- Promote high fleece weight, low breech trait sires **
- Publish ram breeder average ASBVs for all traits, similar to wether trials

Where to from here

- Improve genomic enhanced breech and flystrike traits
- There is an ASBV advantage where breeding objectives have major antagonistic traits
- More objective classification of "Merino Types"
- Complication of differing genetic parameters between Types (Super Fine)
- Improve results from AI, cheaper AI, sexed semen
- An "alternative" has been commercialized; further fine tuning needed

This publication is based on information presented at the Australian Wool Innovation Limited (AWI) National Wool Research and Development Technical Update on Breech Flystrike Prevention held on 17th July 2018. Some information in this publication has been contributed by one or more third parties and licenced to AWI, and AWI has not verified whether this information is correct. This publication should only be used as a general aid and is not a substitute for specific advice. Any reliance on the information contained in this publication is done at your own risk and to the extent permitted by law, AWI and any third party contributors exclude all liability for loss or damage arising from the use of the information in this publication. Except to the extent permitted under Copyright Law no part of this publication may be reproduced by any process, electronic or otherwise without the specific written permission of AWI. Neither may information be stored electronically in any form whatsoever without such permission. AWI gratefully acknowledges the funds provided by the Australian government to support research, development and marketing of Australian wool. GD2792